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1. I n t r o d u c t i o n  

This paper was motivated by [15, 16], where we studied a variety of natural 

statistics on the symmetric group Sn which generalized the length, the major and 

other statistics. In particular, new statistics based on canonical presentations 

by the Coxcter generators were introduced. Then the various Stirling numbers 

were obtained as cardinalities of certain subsets of Sn defined via these statistics. 

For example, the Stirling numbers of the second kind are cardinalities of subsets 

of permutations with prescribed number of left-to-right minima and descents. 

Refinements of the classical MacMahon-type cqui-distribution theorems [10] -- 

in the spirit of tile results of Foata-Schiitzenberger, Garsia-Gessel etc. - -  were 

deduced. 

In this paper the group of permutations S~ is replaced by the wreath product 

Ca l S,~, whose elements are called "colored permutations". Here C~ is the cyclic 

group with a elements. We study canonical presentations in wreath products 

and introduce statistics counting the number of "long" and of "short" factors in 

these presentations. These numbers essentially count the mnnber of certain right 

to left minima in colored pernmtations. It is shown that enumeration of elements 

in wreath products with respect to these (and to these and descent) statistics 

have nice recurrence formulas of binomial-Stirling type. In particular, we present 

a wreath product extension of Stirling numbers of first and second kinds [18], 

interpret these numbers in the wreath product, and prove a MacMahon-type 

equi-distribution theorem over subsets with prescribed statistics. 

Fix four integers a, d, r, g E Z and let 9(n, k) = g~,d,~,e(n, k) 1)e the numbers 

determined by the following recurrence: 

g(0,0) = 1 and 

(1) g(n,k) = ( a n + d k - r )  . g ( n -  1,k) + g . g ( n -  1 , k -  1), 

and g(n,k) = 0 if k < 0 or n < k. 

The numbers ga,d,r,e(n, k) combine and generalize the binomial coefficients 

and the Stirling numbers; see Section 8. For example, gx,0,1,1(n,k) are the 

signless Stirling numbers of the first kind, go,l,O,l (n, k) arc the Stirlin9 numbers 
of the second kind, and g0,o,-1,1 (n, k) are the binomial coefficients. 

For a positive integer a and a subset L C_ {0 , . . . ,  a - 1} of cardinality g let 

AL(n,k) := {(r E Ca ~Sn IminL ( a ) =  k} 

a n  d /____ 

BL(n,k) := {a e Ca ? S, ] desL(a) =minL (a) -~ k}, 
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where minL (a) is the immber of L-colored right to left minima (see Defini- 

tion 4.1.2) and desL(a) is the number of descents with respect to the L-order 

(see Definitions 4.5 and 4.7). Then 

TttEOREM 1.1 (see Corollary 5.2 and Theorem 6.6): 

and 

ga,o,e,~ = #AL(n,  k) 

go,a,e-a,t(n, k) = #BL(n,  k). 

These two systems are essentially dual. This is 

TIIEOR.EM 1.2 (See Theorem 9.4): For every positive integer a, N, and every 

subset L C_ {0, . . .  , a -  1} of size ~, let 8L, N be the N • N matrix whose entries 

are given by 

(_i),,-k 
SL,N(n ,k )  := ~ . #Ag(n ,k )  (O < k,n < N) 

and SL,N be the N x N matrix whose entries are 

1 
SL,N(n,k) := ~-~-#BL(n ,k)  (0 <_ k,n <_ N). 

Then 
S - I  

L ,N  ~- ,r L , N .  

To prove this theorem we apply a general decomposition mid inversion the- 

orems for linear recurrences; see Theorems 8.4 and 8.8 below. These theorems 

are closely related to results of Milne and followers [11, 12, 13]. 

In Section 7 we apply the above setting to show that the length function and 

the flag major index are equi-distribution over subsets of B,~ = C2 } S,~ with 

prescribed colored right-to-left minima; see Corollaries 7.5 and 7.6. This result 

is a type B-analogue of a recent theorem of Foata and Han for the symmetric 

group [7, (1.5)] and refines a recent result of Haglund, Loehr and Remmel [9, 

Theorem 4.5]. 

The rest of the paper is organized as follows. 

Basic facts about wreath products are given in Sections 2 and 3. In Section 4, 

statistics on Ca I S~ based on canonical words and on "colored" orders are 

introduced. Generalized Stirling numbers are interpreted combinatorially in 

Sections 5, 6 and 9, and are formally studied in Section 8 and Appendix 2. The 

main equi-distribution theorem, Theorem 7.3, is given in Section 7. 
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Remark: It was recently brought to our attention that certain refinements of 

the classical MacMahon equi-distribution theorem, which were proved in [15], 

were already studied by Bjhrner and Wachs [5]. In particular, [15, Theorem 

1.9(1)] follows from [5, Example 5.3]. See also [14]. 

2. Prel iminaries  

T H E  W R E A T H  P R O D U C T  Ca ~ Sn. Let G be a group. Recall that  the elements 

of the wreath product G t Sn are of the form a = ( ( x l , . . . ,  Xn),p) where xi E G 
and p E Sn; multiplication is given by 

( ( X l ,  �9 �9 �9 , Xn), P) ( ( Y l ,  �9 �9 �9 , Yn), q) : ( ( X l  Up--1 ( 1 ) , ' ' ' ,  Xn yp-1 (n)), Pq). 

Let A be the set A := G • { 1 , . . . , n }  _= {xj  I x E G, 1 <_ j <_ n}. We identify 

( ( x l , . . . ,  xn),p) with the function ( (Xl , . . . ,  xn),p) - f:  A --+ A, given by 

f:  t j  -+ (tXp(y) )p(j) 

for all t E G and 1 _< j < n. When G is Abelian one verifies easily that  

if, also, g _= ((Yl,. . . ,Yn),q) then f g  - ( ( x l , . . . , xn ) , p ) ( ( y l  . . . . .  yn),q). This 
justifies the above identification. We therefore represent the element a = 

( (x i , . . .  ,xn) ,p)  E G ~ Sn by the n-tuple [Xp(1)p(1),..., Xp(n)p(n)]: 

= ( ( x l , . . . ,  xn),p)=--[Xp(1)p(1),... ,Xp(n)p(n)] = [a(1) , . . . ,  a(n)], 

and we denote ]a] := p. Note that  if a = [Yljl, . .- ,Ynjn] where Yi E G and 

1 < j i  _~ n, then ]a] = p = [ j l , . . . , j n ] .  Let zi E G, p C Sn and let a = 
�9 z -1 (1) , . . .  ,Zp_ll(n)p-l(n)]. [ z i p ( i ) , . . ,  znp(n)]; then a -1 = [ p_l(i)p -1 

In this paper we consider the wreath products Ca ~ Sn, where Ca is the (mul- 

tiplicative) cyclic group of order a: ~ := e 2~/a, and 

Ca := {a t I 0 < t < a -  1}. 

The elements of Ca ~ Sn are identified with "a-colored" permutations, namely 

those permutations a of the set A = C~ x {1 , . . . ,  n} satisfying 

c(~j)  = ~a(j) ,  ~ C Ca, l < j ~_ n. 

We write a = [a(1) , . . . ,  a(n)]. For each j ,  a(j)  = a t j .  la(j)] and has color atJ; 

it is "colorless" if tj -- 0. 
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CYCLE DECOMPOSITION. Let a = ( ( x l , . . . , x n ) , p )  E Ca ~ Sn. The cycle de- 

composition of p induces the corresponding decomposition of a: If p = Pl �9 �9 �9 PT 

is the cycle decomposition of p, and Pi = (@ ) , . . . ,  b(~ )) (in the ordinary cycle 

notation for Sn), for each 1 < i < r let 

y(i) { x j ,  i f j  E {@),...,b(~)}; 
J := 1, otherwise. 

Then a (i) := ((y~i), . . . ,y(i)) ,pi) are the corresponding cycles of a, and a = 

a (1) . . .  a (T) is the cycle decomposition of a. The product Xb~) . . .  Xb! 2 E Ca is 

uniquely determined (since Ca is Abelian), and is called the color of that cycle 

ofp = Id. 

GENERATORS AND LENGTH. Let si = (i ,i  + 1) E Sn, i = 1 , . . . ,  n - 1, denote 

the Coxeter generators of Sn C Ca ~ Sn. In addition, So E Ca ~ Sn is the element 

given by 

So = ((oh 1 , . . . , 1 ) ,  1) - [ch2 ,3 , . . . ,n ]  

where ~ = e 2ri/a. 

The following easy fact is well known. 

FACT 2.1: Let a = [b l , . . . ,  bn] E Ca ~ Sn. 

1. aSo = [abl, b2, . . . ,  b~]. 
2. Let 1 < i < n - 1; then asi = [b l , . . . ,b i+ l ,b i , . . . ,bn] .  

The set S = {s0, s l , . . . , s n - 1 }  C Ca ~ Sn generates Ca I S~ (this follows, for 

example, from Proposition 3.1). 

The length of an element a E C~ 1Sn, denoted g(a), is the minimum length of 

an expression of a as a product of elements in the above generating set S. 

3. Canon ica l  p r e s e n t a t i o n  in w r e a t h  p r o d u c t s  

Consider the following subsets of elements in Ca I Sn. First, let R0 = Ca. Given 

1 _ j _~ n -  1, let 

R ~ : =  "" s l } .  

For l < t < a - l l e t  

and 

R }  : :  { s j  . .  . s to ,  s j  . . .  S t  s l , s j  . . .  8 t O s 1 8 2 , . .  . , S j  . . .  S t081  . . . S j }  

a -1  

t=O 
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Note  tha t  IRjl = a .  (j + 1), hence 

PROPOSITION 3 .1  : 

n- -1  

I I  IRr = a n .  n! = ICa Snl. 
j=O 

Every  e lement  a E Ca ~ S~ has a unique presentat ion 

dr -~ W O " " " w n _  1 

where, for every 0 <_ j <_ n - 1, w j  E R j .  

Proof: By induct ion on n and by Fact  2.1. Recall tha t  every element a E Ca~Sn 

m a y  be interpreted as a colored permuta t ion  [ a ( 1 ) , . . . , a ( n ) ] .  I t  follows from 

this in terpre ta t ion tha t  every element a E Ca ~ Sn is obtained in a unique way 

by insert ing colored n (namely e2~rit/an for some 0 < t < a - 1) into a colored 

pe rmuta t ion  ~ E Ca ~Sn-1.  Now, if a ( j )  = e~Trit/an and t = 0 then a = ~wn-1 ,  

where 
1, i f j  = n ,  o 

W n - - 1  = E R n _  1. 
8 n - -  1 "" " 8 j ,  ifj < n ,  

If  a ( j )  = e2~it/an and 0 < t < a - 1 then a = ~Wn-1, where 

W n - - 1  -~ 8 n - - 1  "" 8to " ' " 8 j - - 1  E R t �9 n - l "  

This proves "existence". Uniqueness now follows by a s tandard  count ing argu- 

ment .  I 

Definition 3.2: Call the above presentat ion a = w 0 . . -  wn-1 in Proposi t ion  3.1 

the canonical  presentat ion - -  or the canonical  word - -  of a = Wo .. �9 Wn-1. 

PROPOSITION 3.3: Write the above canonical word explicitly: a = wo �9 .. Wn-1 

= sil "'" sir. Then  r is the m i n i m u m  length o f  an expression o f  a as a product  

o f  e lements  in S = {so, Sx , . . . ,  Sn-x}, i.e. the length o f  a is f(cr) = r. 

For a proof  see, e.g., [4, CA. 3.3]. 

COROLLARY 3.4: Let  a = w o "  "Wn-1 be the canonical word o f  a E Ca I Sn, 

then f (a )  = s + " "  + f (Wn-1) .  In particular, i f  ~ E Ca ~ Sn-x  and r E Rn-1  

then e(~rr) = e(~) + e(r).  
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4.  S t a t i s t i c s  o n  c o l o r e d  p e r m u t a t i o n s  

In this section we introduce various statistics on C~ ~ S,~ based on canonical 

words, on right-to-left-minima, and on certain descent sets Desn .  

4.1 RIGHT TO LEFT MINIMA. Recall from Section 2 the notat ion c~ := e 27ri/a 

and [a I (for every a E Ca I Sn). 

Defini t ion 4.1: 
t---- 

1. Let p = [ j l , . . . , j n ]  E Sn.  Define Min(p) C_ { 1 , . . . , n }  as follows: 

4----  

Min(p) = { J i i J i  is a r. t . l .min in [ J l , . . .  , jn]}. 

. 

Here and below r.t.l.nfin stands for right to left minimum. 

Let L C_ { 1 , . . . , a  - 1}. Let a E Ca I Sn be a colored permutat ion,  and 
r  

write a = [bl , . .  ,b~]. Define MinL(a) C_ {1 , . . .  ,n} as follows: 

+____ 

M i n L ( a ) = { I b i  I Ibilis a r.t . l .min in lal, and bi = ~ l b i l  for some u E L}. 

+----  4----- 

Finally, denote minL (c~) = [MinL (a)[. 

For example, let a = [aa, a35 ,1 ,a22 ,  a41 E 6'4 I S s; then lal = [3,5,1,2,4] 

and Min{0,1,2,a}(a) = {1,2,4}, Minll ,2}(a ) = {2,4}, Min{o,3}(a ) = {1}, and 
+._.__ 

Min{o,l,2}(a) = {1, 2, 4}. 

PROPOSITION 4.2: 

1. Le t  p = [ J l , . . . , j n ]  E Sn,  let  Vo = 1 and let  p = v o v l . . . v , ~ _ l  be i ts  

canonical presentat ion.  Then  j i  is a r . t . l .min  in [ j l , . . . ,  jn] i f  and only  i f  

Vii-1 = 1. 

1. Le t  a E C~ t S,~ and a = W o ' "  wn-1  (Yi wi E Ri )  be i ts  canonicM word. 

Also,  let [a I = vl  �9 " v , ~ - I  be the  canonical presenta t ion  o f  [al. For each 

O < u < a - 1  and l <_ j <_ n - l denote  

s j  . . . s~ . . . s j  E R j  i f  u r O, 
r u , j  :_~. 

t 1 i f u  = 0 .  

Then  vi = 1 i f  and only  i f  w2 = ru,i for some  u. 

3. Le t  L C_ {0 . . . .  , a -  1}. Then 

4----  

M i n L ( a ) = { i + l l 0 < i < n - - 1  and 3 u E L ,  w i = r u # } .  

Proof: Tile proof is s tandard  (by induction on n) and is left to tile reader. 
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E x a m p l e  4.3: As before, let a = [c~3, a35, 1, c~22, a4] E C4 ? $5. First, la[ = p = 

[3, 5, 1, 2, 4] = (S2Sl)(S4S3S~) = Vo . . . v4 ,  where v0 = vl = v3 = 1, v2 = s.2sl and 

v 4 : 848382 . Clearly, the elements which are the 1.t.r.min of p are 1, 2 and 3, 

and indeed v1-1 = v2-1 = v4-1 = 1. 

Next, the canonical presentation of a is a -- Wo. . .w~- l ,  where Wo = 1, 

W 1 ~-- 8 1 8 2 8 1 , 8 2 8 1 8 0 ,  W 3 = 8 3 8 2 8 1 8 0 8 1 8 2 8 3  and w4 = 8 4 8 3 8 2 8 1 8 3 8 1  . The elements 

ru,i here are r0,0 = Wo = 1, r2,1 -- wl and rl,3 -: w3. Now let, for example, 
<___.._ 

L = {0,1,2,3}; then Minn(a) = {1,2,4} = { 0 +  1,1 + 1 , 3 +  1}. 

COROLLARY 4.4: Let  ~ E Ca t Sn-1  and r = Wn-1 E Rn-1  (hence a E Ca ? S,~). 

Le t  

(2) 

Then  

{n - 1} i f 3 u  E L W n _  1 = ru,n-1,  
KL(r) = KL(wn-1) := O otherwise. 

/ - - - -  4----- 

(3) MinL (0) ----MinL (~) U I~L(Wn-1), a disjoint union. 

4.9, THE ORDER <L AND THE L-DESCENT SET. Notice that  Ca ? Sn is iden- 

tified with the permutations a of the set {avj  I 0 < v < a - 1, 1 _< j < n} U {0} 

where, by definition, 0(0) = 0 and a ( a v j )  = a v e ( j ) .  

Definit ion 4.5: A subset L C { 0 , . . . , a -  1} determines a linear order <L on 

{ a ' J  I 0 < v < a -  1,0 _< j < n} U {0} as follows: 

Let U = { 0 , . . . , a -  1} \ L be the complement of L in { 0 , . . . , a -  1}. 

If v E L then c~j  <n 0 for every 1 _< j _< n. If v E U then c~'j >L 0 for every 

l < j < n .  

For v , u  E L (not necessarily distinct) and i ~ j E {1 , . . .  ,n}, c~vi <L a~j  if 

and only if i > j ("reverse order"). 

For v , u  E U (not necessarily distinct) and i ~ j E {1 , . . .  ,n}, c~Vi <L c~ j  if 

and only if i < j .  

Then, for each 1 <_ j < n, order each subset { a v j  I v E L} (and each subset 

{avj  ] v E U}) in an arbitrary linear order. 

This yields a linear order <L on the set { a ' j  [ 0 < v < a - l , 0  _< j _< n}U{0}. 

For example, let a = 4 and L = {2, 3}; then U = {0, 1}. We can choose the 

following order: 

a~n <L a 3n <L a2(n -- 1) <L o~3(n -- 1) <L "'" <L OL2 <L Oz3 <L 0, 

0 < n a < L  l <n a2 <n 2 <L . ' '  <n (~(n--1) <L ( n - - 1 )  <L an  <L n. 
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Tile following is an obvious property of this order. 

FACT4.6: L e t # = [ # ( 1 ) , . . . , # ( n - 1 ) ] E C a ~ S n - 1  a n d l e t 0 < v < a - 1 .  

I f v  E L then c~Vn < i  a ( 1 ) , . . . , a ( n -  1); 

if v E U then aVn >L 5 ( 1 ) , . . . , ~ ( n - -  1). 

De/inition 4.7: The L-descent set of a E Ca ~ Sn is 

DesL(a) := {0 < i < n- -  1 I a(i) >i  a(i + 1)}. 

The L-descent number is 

desL(a) := I DesL(a)l. 

If L consists of one element u E {0 , . . . ,  a -  1} then we denote <u, Desu, desu. 

The following notion is the natural analogue of the standard descent sets of 

Weyl and Coxeter groups. 

De/inition 4.8: For a E Ca ~ Sn let the standard descent set be 

Des(a) := {0 < i < n - 1] g(asi) < g(a)}. 

It should be noted that  the u-descent set, Desu, defined above, may also be 

interpreted via the generators. 

PROPOSITION 1.1: For every a E Ca ~ Sn and every 0 < u < a - 1, 

Desk(a) = {0 < i < n -  11 e(vglasi) > e(vgla)}, 

where vu := ( ( a= , . . . ,  (~),  1) = [c~l,c~u2,. . . ,  c~n]. 

Proof: The proof is given in Appendix 1 (Section 10). 

Example 4.10: 
(1) L = {0, . . .  ,a  - 1}. By definition, 

Des{o . . . . .  a-1}(a)  = Des(lal)  = {0 < i < n - 1[ la(i)[ > la(i + 1)1}, 

the standard descent set of la[. 

(2) L = 0. Deso(a) is the complement of the standard descent set of la[ (the 

ascent set of [a[). 

(3) L = {1, . . .  ,a  - 1}. By Proposition 4.9, since Vo is the identity element, 

Des{1 ..... ~ _ l } ( a ) = { O , . . . , n - 1 } \ n e s o ( a )  

= { 0  < i < n - II e(as~) < e(a)},  
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the standard descent set of a. 

(4) L = { 0 , . . . , a - 2 } .  v~-i is the longest element in Ca~Sn and Des{o ..... a-2} 
is the complement of the standard descent set, namely, the ascent set of 
6r.  

LEMMA 4.11: Let L C_ ( 0 , . . . , a  - 1}. Then, for any a E Ca ~ Sn, 

+____ 

desL(a) _>minn (a). 
+__._ 

Proof: Let MinL (a) = ( i l , . . . , i k } ,  and show that for each 1 _<: j _< k - 1, 

a(ij) >L a(ij+l). Indeed, each cr(it) = c~'tla(it)l , vt E L, and la(it)l is a 

r.t.l.min of lal. Therefore la(ij)l < la(ij+;)l, so 

a(ij) = c~'J la(ij) I >L c~ vj+l la(ij+l)l = a(ij+l), 

as was claimed. By the transitivity of the linear order >L, there must be an 

L-descent of a between these two indices ij and ij+l. This contributes (at 

least) k - 1 L-descents to DeSL(a). By definition, a(O) = 0 >L o'(il), and this 

contributes at least one more L-descent of a. II 

Note: Here, we have to allow 0 E DesL(a). 

5. " C o l o r e d "  S t i r l ing  n u m b e r s  of  t he  first  k ind  

In this section we point to connections between statistics on colored permuta- 

tions, defined above, and certain generalized Stirling numbers of the first kind. 

PROPOSITION 5.1: Let L C { 0 , . . . , a  - 1}, ]LI -= r. Then 

E qminL(~) = (rq + a--  r)(rq + 2a-- r) . ."  (rq + n a - -  r). 
aEC~S,, 

Proof.: By Corollary 4.4 it suffices to show that  for every n, 

E qfKL(w,~-l)l = rq + na -- r. 
Wn-lCRn-1 

Indeed, by definition (2) (in Corollary 4.4) 

E qlg~(~,~-~)l = r q + l R n _ l l _ r = r q + n a _ r .  
Wn-lCRn-1 
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COROLLARY 5.2: Let r = ILl as above, and denote 
t - - - -  

gL(n,  k) :=  # { o  E Ca I Sn ]minL (a) ---- k}. 

Then gL (n, k) satisfies the following recurrence: 

gL(n,k) = (an- - r )"gL(n- -  1, k) + r ' g L ( n - -  1 , k -  1). 

Thus, by Equation (1), gL(n, k) = ga,o,r,r(n, k), so 

+-.-- 

ga,0,r,r(n, k) = #{a  e Ca ~ Sn IminL (a) = k}. 

Proof: By Proposition 5.1 
,~ .__  

Z g L ( n , k ) q  k :  ~ q 'n inL(a) -=(rqq-a- - r ) ( rqq-2a- - r )" ' ( rqq-na- - r )  �9 
k aEC~S,~ 

Thus 

Z gL(n, k)q k = (rq + na - r) ~ gL(n -- 1, k)q k 
k k 

= ( n a - r )  y ~ g L ( n - -  1,k)q k + ~ r ' g L ( n - -  1 , k -  1)q k, 
k k 

and the proof follows. I 

Note: When a = ILl = r = 1, gL(n, k) are the signless Stifling numbers of the 

first kind. In Section 8 we study similar but  more general such recurrences. 

Recall from Section 2 that the cycles of a E Ca I Sn are "colored" by elements 

of Ca. 

Definition 5.3: Given L C {1, . . .  ,n} and a E Ca ~ S~, we say that a cycle of a 

is L-colored if its color belongs to L. 

COROLLARY 5.4: The number of elements a E Ca ~ Sn with exactly k r.t.l.min 
of [a[ which are L-colored, gL(n, k), is also the number of elements a E Ca ~ Sn 

with exactly k cycles which are L-colored. 

Proof: The proof is a natural extension of [17, p. 17]. The following notion will 

be used in the proof. Let a = ( (Xl , . . . ,  xn),p) E Ca~Sn, and let "y = (b l , . . . ,  bin) 
be a cycle of p = lal. Assume w.l.o.g, that the last element bm is minimal; then 

the color of bin, xbm, will be called the right-color of the cycle % A cycle is right 
L-colored, for L C_ {0 , . . . ,  a -  1}, if its right-color belongs to {a~[ u C L}. 
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Let G~(n ,k)  denote the set of elements a E Ca lSn  with exactly k cycles 

which are right L-colored and 

4 - - -  

GL(n,k)  := {0 E C,~ I Sn IminL (a) = k}. 

We first construct a bijection 

C'L(n,k) ~ ~ GL(n,k).  

Given o' = ( (Xl , . . . ,Xn) ,p ' )  E G'L(n,k ), reorder the cycles in p' = I0'1 such 

that  each cycle in I o~] is written with its smallest element last (i.e. rightmost), 

and the cycles are written in increasing order of their smallest element. By 

assumption, exactly k of these smallest elements are L-colored. Let p be the 

permutat ion obtained from p' by erasing the parentheses of the cycles, and let 

0 = ( ( X l , . . . , x , ) , p ) .  Clearly, in p = Io1, those smallest elements are now 

r.t.l.min, and in a they have the same colors as in 0', namely exactly k of 

these r.t.l.min are L-colored. Thus a E GL(n, k). That  correspondence can be 

reversed by parenthesizing p E Sa according to its r.t.l.min, therefore the above 

is a bijection. 

Let G~(n,  k) denote the set of elements 0 E C~ ~ Sn with exactly k cycles 

which are L-colored. There is a rather obvious bijection 

G"L~(n,k) ( ~ G L' (n,k) 

as follows. Given 0" = ( ( x l , . . .  ,x,~),p") E G'/~(n,k), let (b l , . . .  ,bin) be a cycle 

of p" with bm minimal, then replace Xb,,, by Xb~'"Xb,,. Do it to each cycle. 

This clearly maps G'L(n,k ) ~ Gk(n ,k) ,  with an obvious inverse map. This 

completes the proof. II 

6. " C o l o r e d "  S t i r l i ng  n u m b e r s  o f  t h e  s e c o n d  k ind  

In this section we prove the second part  of Theorem 1.1 (Theorem 6.6 below). 

Throughout  this section we assume that  L C_ {0, 1 , . . .  , a -  1}, with the cor- 

responding linear order < t. as above. 

LEMMA 6.1: Let o = Wo...w,~-i (canonical presentation), ~ = Wo...w,~-2, so 

0 = ~wn-1. Then deSL(O) :>L deSL(O'). 

Proof." Recall that  o is obtained from d by inserting some a"n into #. Thus, 

for certain bl , . . . ,bn-1  E Ca " { 1 , . . . , n -  1} and 1 < t < n -  1, 

---- [b l , . . . ,  b~-1, n] and ~ -- [b l , . . . ,  bt, o /n ,  bt+l , . . . ,  bn-1]. 
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Since the L-order is linear, if bt ~>L bt+l then either bt >L oLVn or (and/or) 

avn >L b~+l, which implies the proof. | 

LEMMA 6.2: With the notation of the previous Lemma, 

1. if  a(n) = a~n for some v E L then Minn (a) =MinL (9) U {n}, hence 
+ - - -  

minL (a) =minL (~) + 1; 
4 - - -  + - - -  

2. i ra(n)  # a ' n  for any v E L then minL (a) =minL (~). 

Proof: The lemma is an immediate consequence of Corollary 4.4. | 

The following is a key observation here. 

LEMMA 6.3: Let a = (rwn-i as above, and assume desL(a) =minL (a) = k. 

1. I ra(n)  = aVn for some v E L then desL(~) =nfinL (~) = k - 1. 
+____ 

2. I f a (n )  # aVn for any v �9 L then desL(~) =minL (9) = k. 

+ - . -  

P r o o f . "  1. Assume a(n) = avn,  v E L. By Lemma 6.2.1, minL (9) =minL (a)-- 

1. Clearly in that case DeSL(a) = DesL(~)U{n--1} ,  hence also desL(a) = k - 1 .  
+ - - -  

2. If a(n) # aVn for any v �9 L then, by Lemma 6.2.2, nfinL (a) =minL (~). 

Therefore by Lemmas 6.1 and 4.11, 

k =- deSL(a) ~_ deSL(~) _>minL ((~) =nfinL (a) = k, 

+_.__. 

forcing equality. Thus desL(~) =minL (9) = k. | 

LEMMA 6.4: Let ~ E Ca~Sn-I, d = [d(1) , . . . ,  d (n-1) ] .  Assume that desL(~) = 
+____ 

nfinL (d) = k arid let DeSL(~) = { i l , . . . , i k } .  

1. I f  V q~ L, then there are exactly k + 1 elements a E Ca l S,~ such that 

a = 9w,~-1 for some wn- i  �9 R,~-I and desl,(a) =minn (a) = k. 

2. I f  v �9 L, then there are exactly k such a's "over" ~ satisfying desn(a) = 

IninL (a) = k. 

Proof: Fix some bn = avn and insert it into a to obtain a = 9Wn-1. 

1. v ~ L, hence 9(1) , . . .  , a ( n -  1) <L b,t. If bn is inserted immediately to the 

right of some 9(it) (1 < t < k) or in tile last (n-th) position, then desL(a) = k. 
4-,--- 4---- 

Also, by Lemma 6.2.2, nfinL (a) =minL (9) = k. Conversely, if desL(a) = k 

then b,~ was inserted into one of these k + 1 positions. 

2. v E L, hence b,~ <L,0,(7(1), . . .  , (~ (u-  1). If bn is inserted immediately to 

the right of some ~(it) (1 < t < k) then desL(a) = k. Also, in this case bn is 
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not inserted in the last position; by Lemma 6.2.2, minL (a) =minL (~) = k. 

Conversely, if desL(a) = k then b~ was inserted into one of these k positions. 

Note that  if il r 0 and bn is inserted in the first (left) position then 0 is an 

additional u-descent of a, since 0 >L bn. m 

De~nition 6.5: Let fL(O,O) = 1 and define 
/.____ 

fL(n ,k )  = # { a  E Ca I Sn I desL(a) =minL (a) = k}. 

THEOREM 6.6: Let g = ILl. Then fL(n, k) satis~es the following recurrence: 

fL(n ,k )  = (ak + a -  e) . fL (n- -  1,k) + e. fL(n -- 1 , k -  1). 

Thus fL(n,  k) = go,~,e-a,e(n, k), so 

go,a,e-~,e(n,k) = # { a  E Ca ~ Sn { deSL(a) =minL (a) = k}. 

Proos Let 
-t---- 

BL(n,k)  := {a E Ca I Sn I desL(a) =minL (a) = k}, 

so IL (n, k) = #BL (n, k), 

CL(n,k)  := {a = #w,~-i E BL(n,k)  [ # E BL(n--  1, k -  1)}, 

and 

DL(n,k)  := {a = #W~_l E B L ( n , k ) [ 6  E BL(n - 1,k)}. 

By definition, Cn(n, k) N DL(n, k) = 0. By Lemma 6.3, 

BL(n, k) = CL(n, k) U DL(n, k). 

The proof will follow, once we show that  

1. ICL(n,k)[ = g. {BL(n - 1, k - 1)] and 

2. IDL(n,k)l = (ak + a -  g). I B L ( n -  1, k)l. 

1. By Lemma 6.3, all elements in CL(n, k) which are obtained from an element 

E BL(n - 1, k -  1) by inserting a colored n are obtained by inserting an L- 

colored n at the last position: a = [#, aVn], v E L. This proves 1. 

2. Let # E BL(n -- 1,k): desL(~) =minL (~) = k and insert a ' n  into # to 

obtain a permutation a = #wn-1 E BL(n, k). If v ~' L then, by Lemma 6.4.1, 

there are exactly k + l  such permutations a E Bn(n, k). Since there are a - g  such 

v's, we get (a - f)(k + 1) a's. Similarly, Lemma 6.4.2 implies k such a 's when 

v �9 L, namely a total of gk a's. Together, this yields exactly ( a - Q ( k +  1)+gk = 

ak + a - g a's in BL (n, k) "over" each # �9 BL (n - 1, k). This proves 2. | 
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Remark 6.7: Letting a = e = 1, fL(n, k) are the classical Stirling numbers of 

the second kind. 

7. E q u i - d i s t r i b u t i o n  in B ,  = C21 S~ 

In this section we study the case of Bn = C21 Sn, namely a = 2. We prove 

here an equi-distribution theorem between the length parameter  g(a) and the 

flag-major index; see Definition 7.2 below. 

Here L C_ {0, 1} determines <L. In the case L = {1} the natural  order is 

preserved, and it is reversed when L = {0}: 

- n  <1 - ( n  - 1) <1 "'" <1 - 1  < 1 0  <1 1  <1 "'" <1 n and 

n <0 n -  l <0 . . .  < 0 1 < 0  0 <o - l  <0 . . .  <0 - n .  
+..-- 

T h e s e  orders define the corresponding Mino and Mini sets; see Definition 4.1. In 

this section we show that  the length function and the flag major index are equi- 
+---- +.._ 

distribution over subsets of Bn = C2 l Sn with prescribed Min0 and Mini sets; 

see Corollary 7.5 below. This result is a type B-analogue of a recent theorem 

of Foata and Han for the symmetric group [7, (1.5)] and refines a recent result 

of Haglund, Loehr and Remmel [9, Theorem 4.5]. 

THEOREM 7.1 : For every positive integer n 

E H x~. H ti " q~(~) = 
a6B,~ . . ~ -  , , *-- 

~6Mino(a) i6Minl(a) 

(xl + qt,)(x2 + q + q2 + q3t2) . . . (xn  + q + q2 + . . .  + q2n-ltn). 

Proof: By induction on n. Obviously, the theorem holds for n = 1. By 

Proposition 3.1, the 1.h.s. equals 

~ E B n - 1  t E R n - 1  +-- ~-- iEMino(~r) iEMinl(~r) 

By Remark 3.4 and Corollary 4.4, Q equals 

[ E ~I xi H tiqe(~)][ 
~ C B n - 1  ~ -  +-- iEMino(~) iEMinl(~) 

t i = Q .  

E II II 
r E R , , - i  i E K o ( r )  i G K l ( r )  

Thus, by induction, it suffices to show that  

[ E II II § §176 
rER,~- 1 i E K o ( r )  iEK1 (r) 
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0 1 Recall that  in the case of Bn,  Rn-1  R n_  1 U where 

R 0 { 1 , S n _ l , S n _ l S j _ 2 ,  8n-1 n-1 : . . . . .  " " s l }  and 
1 

R n _  1 := {8n-1 ""8O,8n-1  " " 8081~ Sn- I  ""808182 , . .  .~ 8n-1 " "  sosl  " " 8 n - 1 } .  

The only r = wn-1  in Rn-1 with Ko(r)  ~ 0 is r = 1, hence the contri- 

bution of xn. Similarly, the only r = Wn-1 in Rn-1 with K l ( r )  ~ O is 

r = Sn-1 "" �9 So "" �9 Sn-1 - -  of length 2n - 1, hence the contribution of q2n-l tn .  

This also explains the other summands q, q:, etc. 

This implies the proof. | 

Definition 7.2: 

descent set: 

For a E C2 Z Sn : Bn it is natural to consider the following 

DeSA(a)  := {0 < i < n -  11 a(i)  > a(i  + 1)} 

and the following major index: 

majA( ) : =  E 
iEDesA(a) 

i. 

Let 

neg(r := #{iJr < 0} 

and define the flag major index as 

fmaj(r : =  2 .  maYA(~ + 

The flag major index was introduced in [3] in order to extend the MacMahon 

classical equi-distribution theorem to Bn.  For a unified definition of the classical 

major index and the flag-major index as a length of a distinguished canonical 

expression, see [3, Theorem 3.1]. The flag-major index has many other com- 

binatorial and algebraic properties which are shared with the classical major 

index on Sn; see, for example, [1, 2, 9] and references therein. 

The following theorem is a flag-major index analogue of Theorem 7.1. 

THEOREM 7.3: For every posi t ive  integer n 

E H x i"  I I  t i 'q lmaj(a)  : 
aEB,~ *-- *-- 

iCMino(a) i f fMinl(a)  

(Xl + qtl)(X2 + q + q2 + q3t2 ) . . .  (Xn + q + q: + "'" + q2n- l tu) .  

To prove this theorem we need the following lemma. 
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LEMMA 7.4: 

Proof: 

E 
rER~-I 

STATISTICS ON WREATH PRODUCTS 

For every ~ E B,~-I 

E qfmaj(er) = qfmai(~). (1 + q + . "  + q2n-1). 

rERn-1 

By the definition of fmaj (Definition 7.2), 

qfm,j(Vr) = ~ q2majA(ar)+neg(ar) 

tERn-1 

= E q2majA(~r)+neg(~r)_{_ E q2majA(ar)+neg(ar) 
rER~ rER1,_I 

= E q2majA(ar)Tneg(a) + E q2majA(ar)+neg(#)+l 

rCR~ rERI~_I 

205 

By a theorem of Garsia and Gessel [8, Theorem 3.1], 

E q2ma/A(a~) = E q2maj~(a~) = q2majA(~). (1 +q2 + . . .  +q2(U-1)), 

rER~ rERI,,_I 

completing the proof of the lemma. | 

Proof of Theorem 7.3.: Again, by induction on n. Obviously, the theorem 

holds for n = 1. 

Recall the definition of ru,n-1 from Proposition 4.2. Then for every d E B~-I,  

(4) fmaj(~rl,n_~) = fmaj(~) + 2n-1  fmaj(~.ro,n_l) = fmaj(~). 

Combining (4) with Lemma 7.4 implies 

(5) Z q~~ = q~~ (q +"" + q~n-~)" 
rER.-l\{ro,.-1,rl,n-1} 

Clearly, the 1.h.s. in the theorem equals 

E E H Xi" l~ ti'qImaj(ar) 
~EB~-I rERn-l\{ro,n-l,rl,n-1} . . . .  iEMino(~r) iEMinl(~r) 

§ E E II x,  II tiqsmo (  ) 
aeB~-i rE{ro,n-l,rl,n-1} 4-- .-- ieMino(Vr) iEMinl(er) 
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By Corollary 4.4 and (5), the first sum equals 

E E qfmaj(Vr). H Xi" H ti 
_ + - - _  

~ E B , , - 1  r E R , ~ - l \ { r o  . . . .  1,rl,,~- 1 } iEMino (5")  i~Minl  (~) 

= H xi" I I  t i 'qlmaJ(a)(q+'"+qn-2)" 

i~ Mini) ( (T)  iEMin I (SQ 

By Corollary 4.4 and (4), the second sum equals 

I I  xi" H ti "qfmaJ(~)(x,~ + tnq2n-'), 

iEMino(~) iEMinl(~)  

completing the proof. 1 

We deduce 

C O R O L L A R Y  7 . 5 :  For every positive integer n 

Isr. J. Math .  

E II II E II xi II t,r 
- -  ~ - - _  

. . . .  a E B n  iEMino(a) (a) a E B n  iEMino (a) iEMinl  (a) 4- iEMinl 

Equivalently, for every positive integer n and every pair of disjoint subsets 
B1,B: C_ { 1 , . . . , n } ,  

E qe(~) = E qfm,j(o). 

{~EB. I Mi.1 (o)=.1 ,Mino(~)= R2 } {~B. I Mi,,l (~)=R~ ,Min.(~)= B..} 

Proof." Combine Theorem 7.1 with Theorem 7.3. 1 

C O R O L L A R Y  7.6: For every positive integer n 

4 - - - -  4 - - - -  ~ - - - -  * - - - -  

E qe(~176176 train1 (~ = E qlmaJ(~)Xmi"~ 

aE B,~ aE B,,  

= (x + qt)(x + q + q2 + q3t).. " (x + q + q2 + ...  + q~-lt)" 

Proof." Substitute Xl . . . . .  xn = x and tl . . . . .  tn = t in the r.h.s, of 

Theorems 7.1 and 7.3. 1 

8. Generalized binomial-Stir l ing numbers  

In this section we present the generalized binomial-Stirling numbers, defined by 

a natural recurrence relation. 
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8.1 THE RECURRENCE: MAIN EXAMPLES. 

Detinition 8.1: Fix three integers a, d, r E Z and let h(n, k) = ha,d,~(n, k) be 

the numbers determined by the following recurrence: 

(6) h(n,k)  = (an + d k -  r) . h ( n -  1,k) + h ( n -  1, k -  1), 

where h(0,0) = 1 and h(n,k)  = 0 if k < 0 or n < k. 

We call ha,d,r(n, k ) t h e  (a, d,r ) -binomial-St ir l ing n u mb e r s .  

The following examples justify that  terminology. 

Example 8.2: The three main examples of such a system of numbers are the 

binomial coefficients and the two types of the Stirling numbers. 

1. a = d = 0 ,  r = - l ,  s oh (n ,k )  = h ( n - l , k ) + h ( n - l , k - 1 ) .  In this 

case h(n, k ) =  (k) are the binomial coefficients. 

2. a = r = l ,  d = 0 ,  s o h ( n , k ) = ( n - 1 ) . h ( n - l , k ) + h ( n - l , k - 1 ) .  Thus 

h(n, k) = c(n, k) are the signless Stifling numbers of the first kind. 

3. a = r = 0 ,  d = l ,  h e n c e h ( n , k ) = k . h ( n - l , k ) + h ( n - l , k - 1 ) .  Here 

h(n, k) = S(n, k) are the Stifling numbers of the second kind. 

8.2 MATRIX PRODUCT DECOMPOSITION. We need to introduce some nota- 

tion. Denote the (i, j ) - th  binomial coefficients by 

Notation: We follow [17]. For 1 _< k _< n, the signless Stirling numbers of 

the first kind are denoted by c(n, k), s(n, k) = ( -1)n-kc(n ,  k) are the Stirling 

numbers of the first kind, and S(n, k) denote the Stirling numbers of the second 

kind. 

Let a, d, r E Z and denote rl = r+d. Assume a, d, r l r  0. For the cases where 

some of these integers are zero, see Remark 8.5, Corollary 8.9 and Appendix 2 

below. 

For a positive integer n construct the following n x n lower-triangular matrices: 

1. Cn : (c(i,j) I 1 <_ i , j  <_ n), 
2. Sn = (s(i , j)  l 1 <_ i , j  ~ n), 
3. Sn = (S(i , j )  l 1 <_ i , j  < n), 

4. Pn = (b(i,j) I 0 ~ i , j  ~ n -  1), 
5. Jn = diag(1 , -1 ,  1 , - 1 , . . . ,  ( -1 )n - I ) ,  

6. an = diag(1,a, a2 , . . .  , an - l ) ,  
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7. dn = diag(1,d, d2, . . .  , d n - 1 ) ,  

8. rn = diag(1, r12,..., r~- l ) ,  where rl = r + d. 

The following properties are either obvious or well known. 

LEMMA 8.3: 

1. Jn=J21. 
2. P n  1 = JnPnJn = ( ( - 1 ) i - J b ( i , j )  [ O <_ i , j  << n -  1). 

3. Sn = JncnJn and Sn = Sn 1, hence cn = JnS~l  Jn. 

4. a n S n a n  1 ~- (a i - J s ( i , j )  I 1 < i , j  <_ n), 

dnSnd~ 1 = (di-J S ( i , j )  [ 1 <_ i , j  <_ n) and 

~ n P n ~  1 = (r~-Jb(i , j )  l 0 <_ i , j  <_ n - 1). 

5. The matrices an, dn, rn and Jn commute  with each other. 

6. lima-~0 a n S n a n  1 = limd-~0 dnSndn 1 = limrl--+o r n P n r n  1 = -fn, where I,~ is 

the n x n ident i ty  matrix.  

THEOREM 8.4: Let  a, d ,r  ~ Z,  rl = r -I- d and a,d, rl 7 ~ O. Let  h(n, k) be a 

sys tem of  numbers such that the matrices hn = (h ( i , j )  [ 0 <_ i , j  <_ n - 1) are 

lower triangular - -  for all n. 

Then h(n, k) satisfy the recurrence (6) i f  and only i f  the following matrix  

equations hold for all n: 

(7) hn = ( a n c n a n l ) ( r n P n l r n l ) ( d n S n d n l ) .  

Proof: Let h( i , j )  denote the entries on the right-hand side of (7). It suffices 

to show that the numbers/ t (n,  k) satisfy the recurrence (6). 

Since h(p, q) are given by the r.h.s, of (7), by matrix multiplication, 

(8) f t (p ,q )=  E a P - J ( - r l ) J - i d i - q c ( p + l ' j + l ) ' b ( j ' i ) ' S ( i + l ' q + l )  
p>j>_i>_q 

(9) = E a P - J ( - r l ) J - i d i - q c ( p + l ' j + l ) ' b ( j ' i ) ' S ( i + l ' q + l ) "  
oo<i,j<cxD 

The last equality follows from the defining conditions c(n, k) = 0 for k < 0 and 

k > n, and similarly for b(n, k) and S(n ,  k). Writing the sum in this form allows 

us to ignore the sum limits. 
Clearly, /t(0, 0) = 1. Apply now Equation (8) to show that the numbers 

h(n, k) satisfy the recurrence (6), namely, that 

(10) [~(n, k) = (an + dk - r) . ft(n - 1, k) + ft(n - 1, k - 1), 

and this will prove the theorem. 
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By (8), since rl = r + d, the right-hand side of (10) is 

(a (n -1 )+d(k+l )+(a - r l ) ) . [~ (n -1 ,  k)+/~(n-1, k - l )  = M1 +M2+M3+M4+M5 

where 

M1 = a(n - 1). h ( n -  1,k) 

(11) = ~ - ~ a n - J ( _ r l ) J - i d i - k ( n _ l ) . c ( n , j + l ) . b ( j , i ) . S ( i + l , k + l ) ,  

i , j  

M2 = d(k + 1). h ( n -  1,k) 

(12) = Z a n - l - J ( _ r l ) J - i d i - k + l c ( n , j + l ) . b ( j , i ) . ( k + l ) . S ( i _ t _ l , k + l ) ,  

i , j  

M3 = h ( n -  1 , k -  1) 

(13) = Z an - l - J ( - r l ) J - i d i - k+ lc (n ' J  + 1). b(j, i ) .  S(i + 1, k), 
i , j  

Ma = a . [z(n - 1, k) 

(14) = E an-J (-r l )J- idi-kc(n,  j + 1). b(j, i ) .  S(i + 1, k + 1) 
i , j  

and 

M 5  = ( - r l )  " h ( n  - 1, k)  

(15) = Z an- l -J  (--rl)J+l-idi-kc(n'  j + 1). b(j, i ) .  S(i q- 1, k + 1). 
i , j  

The recurrence (k + 1)S(i + 1, k + 1) + S(i + 1, k) = S(i + 2, k + 1) implies 

that 

(16) M2 + M3 =- E an- l -J ( - - r l )J - id i -k+lc(n ,J  Jr 1)-b(j , i ) .  S(i + 2, k + 1). 
i , j  

Replacing i + 1 by i and j + 1 by j, Equation (16) implies that 

(17) M2 + Ma -= Z a n - J ( - r t ) J - i d i - k c ( n , J )  " b(j - 1,i - 1). S(i + 1, k + 1). 
i , j  

Replacing j + 1 by j in (15) yields 

(18) M5 = ~ - ~ a n - J ( - r l ) J - i d i - k c ( n , j ) ' b ( j -  l , i )"  S(i  + l , k  + l) �9 
i , j  

Since b(j - 1, i) + b(j - 1, i - 1) = b(j, i), by (17) and (18) 

(19) M2 + M3 + M5 = ~ an-J ( - r l ) J - id i -kc (n ,J )  " b(j, i) . S(i + 1, k + 1). 
i , j  
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Clearly 

(20) M1 + M4 = E a n - J ( - r l ) J - i d i - k n  "c(n,j + 1). b(j,i). S(i + 1,k + 1). 
i,j 

Since n.  c(n,j + 1) + c(n,j) = c(n + 1,j + 1), by (19), (20) and (8) we finally 

obtain 

M ~ + M 2 + M 3 + M 4 + M 5  

= Ean,J ( - - r l )J - id i -ke(n  + 1,j + 1). b(j,i). S(i + 1,k + 1) = h(n,k).  
i,j 

This completes the proof. | 

Remark 8.5: Theorem 8.4 holds when a = 0: in that case, the factor ancna~ 1 
is canceled from (7) since lima~o ansna~ 1 = In. Similarly, it holds when d = 0 

and when rl = 0. 

Remark 8.6: If one reverses the order in (7), it seems that the numbers given 

by 
h n = ( d n S n d n l ) ( ~ n P n l ~ n l ) ( a n C n a n  1) 

satisfy no (obvious) recurrence. 

8.3 THE DUAL SYSTEM Qa,d,r,(n, k). By a trivial induction on i, ha,d,r(i,i) = 
1 for all i. Also, by definition, the matrix ((-1)i-Jha,d,r(i,j))o<i,j<_n-1 is 

lower triangular, hence invertible. By inversion we obtain the dua l  s y s t e m  

Qa,dx(n, k): 

(Qa,d,r(i, j ) )o<i, j<n-1 : :  ( ( - 1 )  i - j  ha,d,r(i, J ) )o l i , j<n-1 , 

and Qa,d,~(n, k) might be called the (a, d,r)-binomial-Stirling numbers of the 

second kind. 

Definition 8.7: Again, let a,d,r E Z and define h(n,k) = ha,d,r(n,k) via 

either (6) or (7). 
1. Call h(n,k) the (a, d, r)-signless binomial-Stirling numbers of the first 

kind. Let 
q(n, k) = (-1)n-kh(n, k), 

and call q(n, k) the (a, d, r)-binomial-Stirling numbers of the first kind. 

Finally, denote 

hn=(h( i , j )  l O < i , j < _ n - 1  ) and qn=(q ( i , j ) ]O<_i , j<_n-1 )  
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n x n lower-triangular matrices. 

2. Define the numbers Q(i , j )  by inverting the matrices q~: 

Q,~ = (Q( i , j )  [ 0 < i , j  <_ n - 1) = q~l = (q(i , j )  [ 0 < i , j  <_ n - 1) -1 

= ( ( - 1 ) i - J h ( i , j ) [ O  < i , j  <_ n -  1) -1. 

Also, Q(i , j )  = 0 i f j  < 0 or if i  < j .  The definition of Q( i , j )  is independent 

of n, provided i _< n. 

Call Q(n ,k )  = Q~,d,r(n,k) the (a,d,r)-binomial-Stirling numbers of the 

second kind. 

The following theorem shows that  such binomial-Stifling numbers of 

the second kind are just a binomial-Stirling system, but with (d, a, r + d - a) 

replacing (a, d, r). 

Clearly, qn = JnhnJ,~, hence hn = J,~Q~l Jn. 

With the notation of Subsection 8.2 we have 

TttEOREM 8.8: Let Q(n, k) = Qa,g,~(n, k) denote the (a, d, r)-Stirling numbers 

of tile second kind, with corresponding matrices Q,~. Then 

1. 

(21) Qn = (d,~cnd~l)(§247 �9 

2. The numbers Q(n, k) = Qa,d,~(n, k) satisfy tile following recurrence, which 

is "dual" to the recurrence (6): 

(22) Q(n,k )  = (dn + a k -  7"2). Q ( n -  1, k) + Q ( n -  1, k -  1), 

where r2 = r + d - a. Thus Q(n, k) = Qa,d,r(n, k) = hd,a,r+d-a(n, k). 

Prook 

implies that 

JnQnJn = (dnSnl  dnl )(rnPnrnl  )(ancnl ant ). 

Applying Lemma 8.3, deduce that 

Qn = Jn(dnJ,~c,~Jnd;1)(rnPJ;1)(anJnSnJna~l)J ,~ 

= (dncJ~X) ( fnJnPnJn~nl ) (anSna;1) ,  

and the proof follows by Lemma 8.3.2. 

2. By Theorem 8.4, (22) and (21) are equivalent, with 7"1 = r2 + a. 

1. By Lemma 8.3.1 and Definition 8.7, h~ 1 = JnQ,~Jn. Inverting (7) 

| 
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COROLLARY 8.9: In particnlar, the two systems of  h~,o,l(n,k) and of 

h0,a,l-~(n, k) are dual to each other: the system of h0,a,l-a(n, k) is obtained 

by inverting the corresponding lower-triangular matr ix  with entries 
( -  1)n-kha,o,1 (n, k). 

Remark 8.10: Theorem 8.8 holds when either of a, d or rl = r + d equals 

zero. For example, when a = 0 apply lima-~0 to (21), using Lemma 8.3.6; see 

Remark 8.5. Similarly for d = 0 or rl = 0. 

8.4 THE (a,d,r ,g)  SYSTEMS. Let g = g' ~t 0 and consider the system of 

numbers g(n, k) = g~',d',~',e' ( n, k) given by the following ( a', d', r', g')-recurrence: 

Again g(0, 0) = 1, and 

(23) g(n, k) = (a'n + d'k - r ' ) .  g(n - 1, k) + e'. g(n - 1, k - 1). 

By a trivial induction one proves: 

Remark  8.11: Let a = a ' / f ,  d = d'/g, r = r'/g, g' = g, and let h(n ,k )  = 

ha,d,r(n, k) be given as in Equation (6). Then for all n and k, 

(24) g . , , d , , r , , e ( n ,  k )  = . ha,d, (n, k) .  

Thus 

(25) 9a,d,r,l(n, k) = ha,d,r(n, k). 

Similar to the dual system Q(n,  k) = Qa,d,r(n, k) of h~,d,r(n, k), construct the 

dual system V(n ,  k) = t~,,d,,~,,e,(n,k) of g~,,d,,r,,e(n,k) as follows: 

Let v (n , k )  = ( - 1 ) n - k g ( n , k ) ,  vn = [v(i , j)  [ 1 <_ i , j  <_ n] and the numbers 

V (n, k) = V~,,d,,r,,e, (n, k) are given by the matrix equation 

v~ 1 = [V( i , j )  [ 1 <_ i , j  <_ n]. 

By matr ix inversion one proves 

Remark 8.12: For all n and k, 

(26) V,,,d,,r,,e, (n, k) = g-kQ~,d,r(n, k). 
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9. Rea l i za t ions  of  t he  dua l  s y s t e m s  

In Sections 5 and 6 two systems of binomial-Stirling numbers are realized by 

certain statistics on colored permutations. It is shown here that  these two 

systems are dual to each other - -  in the sense of Section 8. 

Remark 9.1: 1. Note that  Corollary 5.2 can be considered as a "wreath- 

product-realization" of the system g~,o,l,e(n,k) with 0 <_ ~ < a - 1: the 

recurrence of gL(n, k) there implies that  gn(n, k) = ga,0,~,~(n, k), thus 

+_.__ 

g~,o,e,e(n, k) = # { a  E Ca ~ Sn IminL (or) = k}. 

In particular, if L = {u} then g = 1, ga,o,l,l(n, k) = ha,o,l(n, k) and we have 

+___ 

h~,o,l(n,k) = # { a  e Ca I Sn Iminu (a) = k}. 

2. Similarly, Theorem 6.6 (with d replacing a) is a"wreath-product-realization" 

of the system go,d,e-d,e(n, k) with 0 < ~ < d -  1: the recurrence of fL(n, k) there 

implies that /L(n, k) = go,a,~-d,e(n, k), and by Definition 6.5 

-t--- 

gO,d,e-d,e(n,k) = ~ { a  C Cd ~ Sn I desL(a) =minL ((7) = k}. 

In particular, if L = {u} then ~ = 1, go,d,e-d,e(n, k) = ho,d,l-d(n, k), hence 

ho,d,l-d(n, k) = # { a  E Cd ~ Sn I desk(a) =minu (a) = k}. 

3. Summing tile above on k implies 
t----- 

E gO,d,~-d,e(n' k) -~- ~z{(T �9 Cd~S n I desL(a) =minL ( a ) } .  

k 

This leads to the (d, r)-Bell  n u m b e r s  and with the following wreath-product- 

realization: 

Definition 9.2: Recall the numbers ho,d,r(n, k) = go,d,r,1 (n, k), denote 

bd,r(n) = E ho,g,r(n,k)-= Ego,d ,r , l (n ,k) ,  
k k 

and call these the (d, r)-Bell numbers. 

Note that  by Example 8.2.3, ho,l,o(n, k) = S(n, k) are the Stirling numbers 

of the second kind, therefore bl,o(n) are the (ordinary) Bell-numbers. Further 

properties of the (d, r)-Bell numbers are given in Appendix 2. 

By Remark 9.1.3 and the above definition, 
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COROLLARY 9.3: 
r 

bd,l-d(n) = #{Or �9 Cd l & l  de&,(a) =minu (o')}. 

Recall from [16, Propositions 10.8 and 10.10] that. the signed Stirling number 

of tile first kind, s(n, k), is equal to 

4---- 

( -1 )  n -k .  #{Tr �9 Snl rain (7r) = k}, 

while the Stirling number of the second kind, S(n, k), is equal to 

+___ 

#{n  �9 Snl desOr) =rain Or) = k}. 

These numbers form inverse matrices; see, e.g.,J17, Prop. 1.4.1.a]. This 

phenomenon is generalized to wreath products. 

THEOREM 9.4: For every positive integers a, N, and every subset L C_ 
{0, . . . ,  a -  1} o[ size 2, let 8 L,N be the N • N matrix whose entries are given by 

(_l),~-k ~ -  
�9 #{aECa~S ,~  I minL ( a ) = k }  (O<_k,n<_g) SL,N(rt, k) :-- tn 

azJd S L , N  be the N x N matrix whose entries are given by 

1 +--- 
SL,g(n,k)  := ~--~" # { a  E Ca ISn] desk(a) =min~ (a) = k} (0 < k,n < N). 

Then 

S- I  L , N  = 8L ,  N" 

Proob First note that the results in Section 8 hold for any rational (essentially 

real) a,d,r.  Thus, by Remarks 9.1.(1) and 8.11, 

+ _ _ i  

g -n .  # { a  E Ca ~ S,~ ]minL (a) = k} = f-nga,o,t,t(n, k) = ]la/~,o, 1 (Tl, k). 

Similarly by Remarks 9.1.2 and 8.11, 

4----  

e -n .  # { a  �9 C. ISn [ desL(a) =mint  (a) = k} 

= {-ngo,a,i_a,e(n , k) = hO,a/&l-a/t(n, k). 

Corollary 8.9 completes the proof. | 
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10. Appendix  1: Proof  of  Proposit ion 4.9 

For every element a E C~ t Sn and L C_ {0 , . . . ,  a - 1} define 

invL(a) := {(i , j )  l i < j and a(i) >L a(j)}.  

For 1 < i < n denote tim color of a(i) by zi(a). Namely, zi(a) = j if a(i) = 

We will apply the following combinatorial formula for the length function. 

LEMMA 10.1 ([4, Theorem 3.3.3]): For every positive integers a and n, and 

every element a E Ca ~ Sn, 

e(a) = inv0(a ) + 

whereO := { 1 , . . . , a -  1}. 

(la(i)l- 1) + Z zj(a) ,  
a(i)<o0 j= l  

COROLLARY 10.2: For every element a E Ca ~ Sn and 0 < i < n - 1, 

g(asi) < g(a) r a(i) >0 a(i + 1) 

where we assume a(0) = 0 a~d 0 := ( 1 , . . . , a -  1}. 

Proof." By the definition of the order <0 together with Fact 2.1(1) the corollary 

holds for i = 0. For i ~ 0, the corollary follows from Lemma 10.1 together with 

Fact 2.1(2). | 

Proof  of Proposition 4.9: By Corollary 10.2, 

{0 < i < n -11  ~(VulO'si) < ~(yulO')} : {0 < i "~ n--11 v~la( i )  >0 v ~ l a ( i + l ) }  �9 

One may easily verify that 

vulo'(i) >0 vul(:r( i + 1) ~ a(i) >f~ a(i + 1), 

where fi := { 0 , . . . , a -  1} \ u. 

This proves that for every 0 < u < a - 1, 

(27) Desk(a) = {0 < i < n -- 1[ e ( v u l ( T s i )  < e(Vu-lO)}. 

Proposition 4.9 is deduced from (27) by observing that >~ is the reverse order 

of >~; hence Desu(a) = {0, . . .  ,n - 1} \ Desk. 1 
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11. Append ix  2: Fu r the r  proper t ies  of the  general ized binomial- 
Stirling and Bell numbers 

In this appendix we study some further properties of the generalized binomial- 
Stirling and Bell numbers, introduced in Section 8. 

PROPOSITION 11.1: Let  d = O, namely, the numbers  ha,o,r(n,k) satisfy the 

recurrence (6) with d = O. Let  

(28) fn(X) :=  ~ ha,o,r(rt, k)x k. 
k 

Then 

(29)  A ( x )  = (x  + a - r ) ( x  + 2 a  - r ) . . .  (x  + n a  - r ) .  

In particular, ~ k  ha,o,r(n, k) = (a - r + 1)(2a - r + 1). . .  (na - r + 1). 

Proof'. For n _> 1 let h(n, k) be the coefficient of x k in the following expansion: 

j~(x) = ( a -  r + x ) ( 2 a -  r + x ) . . . ( n a  - r + x) = Z h ( n ' k ) x  k, 
k 

and define h(0, 0) := 1. 

Then s  = (x + na - r ) s  = (na - r)j~_l(X) + X•_l(X). It easily 
follows that /t(n, k) satisfies the same recurrence as ha,o,r(n, k), which implies 

that ft(n, k) = ha,o,r(n, k). | 

In the rest of this section we study the binomial-Stirling numbers with a = 0, 

namely h(n,  k) = ho,d,~(n, k), and deduce further results about these numbers 
and their sums, the (d, r)-Bell numbers. We follow closely Section 1.6 of [19]. 

Denote 

(30) gk(Y) := ~ h ( n , k ) Y  n = Z h~ 
n n 

Thus ho,d,r(n, k) is the coefficient of yn in gk(Y). 

PROPOSITION 11.2: Let  a = O, namely, the numbers  h ( n , k )  = ho,d,r(n,k) 

satisfy recurrence (6) with a = O: 

(31) 

Then 

(32) 

h ( n , k )  = (dk - r) . h(n  - 1, k) + h ( n -  1 , k -  1). 

yk 
g k ( y )  = 

(1 - ( - r ) y ) ( 1  - ( d -  r ) y )  . . . (1 - ( k d -  r ) y )  " 
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Proof: 

(33) 

Clearly 
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Define ~k (Y) aud h(n, k) via the expansion of the following ratio: 

gk(Y) = (1 -- (--r)y)(1 -- ( d -  r ) y ) . . . ( 1  - ( k d -  r)y)  ~ 

Proof: Let 

g i ( y )  = = (1 - ( - r ) y ) ( 1  - ( d -  r ) y )  . . . (1  - ( k d  - r ) y )  ' 

and notice that ho,d,r(n, k) is the coefficient of y~-k  in g~(y). Applying partial 

fractions, this can be written as 

1 k O~t 

(1  - ( - r ) y ) ( 1  - ( d -  r ) y ) . . .  (1  - ( k d -  r ) y )  = E 1 - ( t d -  r)y  t----0 

with some at E R. 

Y "~k-l(Y), 
= 1 - ( d k  - r ) y  

hence gk(Y) =- (dk - r) . y . gk(Y) + Y" gk - l  (Y), namely, 

E h(n,  k )y  n = E ( d k  - r)f~(n - 1, k )y  n + E f~(n - 1, k - 1)y n. 
n n n 

Comparing coefficients, it follows that ft(n, k) satisfies the same recurrence (31) 

as h(n,  k), hence h(n,  k) = fz(n, k), which completes the proof. II 

COROLLARY 11.3 (see [17, Ex. 16 in Ch. 1]): 

(34) ho,d ,r (Tt  , k )  -~ E ( - r )  a ~  (d - ~ . )a l -1 . . .  (kd - r )  a k - 1  

the sum being over all composit ions al + ".. + aa+l = n + 1 where ali ai >_ 1. 

It should be interestiug to give Equation (34) a purely combinatorial proof. 

The following proposition extends [19, (1.6.7)]. 

PROPOSITION 11.4: 

k (td - r) n 
(35) h o , d , r ( n ,  k )  = E ( - 1 )  k - t "  dk  " t ! ( k  - t ) ! "  

t=0 
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To calculate at ,  multiply both sides by 1 - ( t d -  r )y ,  then substitute y = 

1 / ( t d  - r).  On the right we get at  and on the left 

1 

(1 - (-r)y)... (1 - ( ( t -  1 ) d -  r ) y ) ( 1  - ( ( t  + 1 ) d -  r)y)... (1 - (kd- r)y) 
1 

(1 - O.d-r~ .. (1 -- ( t -D 'd- r )  �9 (1 ( t + l ) . d - r ) .  (1 - k.d-r~ 
t . d - r  ] " t . d - r  t . d - r  ~ J 

(td - r) k 

t d .  ( t -  1 ) d . . . d .  ( - d ) .  ( - 2 d ) - . . ( - ( k -  t )d) 

( td - r) k 

= ( - 1 ) k - t  d~ .  t!(k - t ) !  

Deduce that  
( td - r) k 

a t  = ( - - 1 ) k - t d k  . t ! (k  _ t)!" 

Recall that  h(n ,  k) is the coefficient of y n - k  in g~(y), and that  

k 
OQ 

g~'(Y) = E 1 - ( ( td  - r )y"  
/=0 

Thus 
k 

OQ 
h(n, k) = lye-k] ~ 1 - ( t d -  r)~ 

t=0 

k k 

_ at  _ E ( t d  _ r)n_kc~t 
-- E [ Y n - k ] l - - ( t d - r ) Y  t=o 

t :O 

k (td - r) k 
= E ( t d  - r ) n - k ( - - 1 ) k - t "  d k .  t ! ( k  --  t ) !  

t=O 

k (td - r) n | 
= E ( - - l l k - t ' d k  . t ! ( k - t ) ! "  

t : O  

Recall the (d,r)-Bell numbers bd,r(n) = ~ k  ho,d,r(n, k) from Definition 9.2. 

We have the following formula for these numbers, extending a remarkable result 

of Dobinski [6]. 

PROPOSITION 11.5: 

b d , r ( n )  = e l / d  
t..=o 

Proof: We continue to follow [19]. 
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Choose M large enough. Then, by the previous proposition, 

M k ( t d -  r) ~ 
b~,~(,~) = ~ ~ ( - 1 1 ~ - ' .  d~ ' t!(k - t ) !  

k----0 t=O 

M ( t d - r )  '~ M (_l)k_ t 
= E E 

t=O k=t  

M ( td_r )  n ~ ( _ 1 )  s (~)s  

= ~ -t.~i " (s)! 
t=O s=O 

The proof now follows by sending M to infinity, since then the second factor 
becomes 

f i ( - 1 )  s (1) s 1 
s_-o ~ ' d = 6 / d "  

COROLLARY 11.6 :  F o r  e v e l y  positive n ,  

I oo (2t + 1) n 
(36) #{a e B~I des(a) =mini (a)} = ~ ~ t!2t , 

where des(a) = #{0 < i < n-1[ e(asi) < e(a)} is the standard descent number. 

Proof: Combine Corollary 9.3 with Proposition 11.5 (letting d = 2 and r = 
-1). The identity des(a) = desl (a) (Ya e Bn) (see Example 4.10.3) completes 
the proof. | 

Definition I1.7: 

bd,~(n)'s: 

PROPOSITION 11.8: 

Let Bd,r(X) be ttle exponential generating function of the 

X ~ 
Bd,~(x) = f i  bd,~(n)~p. . 

n=O 

Bd,r(X)-=exp( ed~ - d r x -  1) 
d 



220 

Proo~ 

Thus 
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Bd,,.(x) - 1 = 
n = l  t = O  

= e lid ~ n! 
t = 0  n----1 

1 ~ 1 . (e(td_~) ~ _  1) 
= el/d 

t = 0  

e-rX ~ o  1 . etdx = - 1  . 
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